Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Research and Design
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biodiesel separation using ultrafiltration poly(ether sulfone) hollow fiber membranes: Improving biodiesel and glycerol rich phases settling

Authors: M.A. Noriega; M.A. Noriega; Alberto Claudio Habert; P.C. Narváez;

Biodiesel separation using ultrafiltration poly(ether sulfone) hollow fiber membranes: Improving biodiesel and glycerol rich phases settling

Abstract

Abstract After alkali-catalyzed transesterification reaction for biodiesel production, the glycerol-rich phases have to be separated. These phases are traditionally separated by settling, requiring long residence time, especially when soaps and gels are formed. In this work, biodiesel, and glycerol rich phases separation was experimentally assessed using poly(ether sulfone) hollow fiber membranes (PES-HFM). Experimental data were obtained in a continuous bench scale system. The effect of pressure difference through the membrane (0–0.6 bar), feed composition and biodiesel-rich phase mass fraction (0–0.8) on permeability and permeate composition were studied. In addition, a mathematical model adopting the Hagen–Poiseuille transport equation for membrane ultrafiltration, where permeate fluxes and compositions depend on the Liquid–Liquid Equilibrium (LLE), was proposed, correlated and experimentally validated. Experimental results demonstrated only glycerol-rich phase permeated through the membrane following the LLE. Glycerol-rich phase flux increased when pressure difference through the membrane augmented, and decreased when permeate viscosity increased. The highest experimental permeability (33.2 kg bar−1h−1m−2) was obtained at the highest methanol content in the feed stream, 66%wt., equivalent to a molar ratio methanol to oil 18:1 fed to the reactor. The mathematical model predicts an increase in the glycerol-rich phase flux when temperature and methanol content augment. The transport mechanism coupled to the mathematical model explained accurately the membrane role in the separation of the compounds involved in transesterification of vegetable oils, as well as the membrane selectivity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%