Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cleaner Energy Syste...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cleaner Energy Systems
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Operational greenhouse gas emissions of various energy carriers for building heating

Authors: Jordi F.P. Cornette; Julien Blondeau;

Operational greenhouse gas emissions of various energy carriers for building heating

Abstract

The decarbonisation of the building heating sector requires a shift from decentralised fossil fuel heating appliances to systems converting energy carriers with low greenhouse gas (GHG) emissions. However, for certain energy carriers, a considerable portion of GHG emissions arises upstream during production, processing and transportation, rather than during energy conversion. Accurately quantifying these indirect GHG emissions typically requires life cycle assessments, which are often resource-intensive and impractical during the early stages of energy system design. This study introduces operational GHG emissions as a pragmatic metric for the preliminary assessment of energy carrier environmental impact in building heating applications. These operational GHG emissions include both direct CO2 emissions and indirect CO2, CH4 and N2O emissions. Based on a comprehensive literature analysis, average estimates are proposed for the operational GHG emissions of various energy carriers within a European context, including natural gas, oil, coal and wood, as well as the average European and Belgian electricity grid, and hydrogen from various production methods. The findings underscore the significant contribution of indirect GHG emissions, as the selection of the energy carrier with the lowest environmental impact hinges on whether direct emissions alone or the broader operational GHG emissions are considered. By integrating operational GHG emissions into the early design stages of energy systems, stakeholders can make more informed decisions about which energy systems warrant further investigation, thereby facilitating more sustainable energy system development from the outset.

Country
Belgium
Related Organizations
Keywords

Electricity grid, greenhouse gas, Global warming potential, Primary energy source, Building heating, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold