
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Inspection of hybrid based nanofluid flow over a curved surface

pmid: 31981759
In this paper, we discussed the Cu - Al2O3/H2O (Hybrid nanofluid) flow over permeable exponentially stretching channel. The hybrid nanofluid involves two kinds of nanoparticles along with base fluid (pure water). Our research objective is to evaluate the heat transfer rate of hybrid nanofluid.The resulting system is numerically tackled via shooting method (bvp4c).The hybrid nanofluid gains larger rate of heat transfer as compared to simple nanofluid. The impact of non-dimension parameter on temperature profile, boundary layer will be analyzed for enormous values of dimensionless parameter. Also, boundary layer thickness when γ 0 (suction) will be compared. The present results with the existence literature will be compared for justification/validation.
- King Khalid University Saudi Arabia
- King Khalid University Saudi Arabia
- Ton Duc Thang University Viet Nam
- An Giang University Viet Nam
- An Giang University Viet Nam
Hydrodynamics, Nanoparticles, Nanotechnology, Algorithms
Hydrodynamics, Nanoparticles, Nanotechnology, Algorithms
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).177 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
