Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Coal Geology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Laboratory characterisation of fracture compressibility for coal and shale gas reservoir rocks: A review

Authors: Dongxiao Zhang; Yuling Tan; Yuling Tan; Luke D. Connell; Shaojun Li; Xia-Ting Feng; Zhejun Pan;

Laboratory characterisation of fracture compressibility for coal and shale gas reservoir rocks: A review

Abstract

Abstract Unconventional natural gas, including coalbed methane and shale gas, has become important natural gas resources. Coal and shale reservoirs are characterised by low porosity and low permeability and difficult for gas production. These reservoirs are also considered as fractured reservoirs, i.e. the natural fracture/cleat system in coals and bedding direction microfractures in shales. Permeabilities of these reservoirs are sensitive to stress change. During gas production, the pressure drawdown significantly increases effective stress, and thus decreases the absolute permeability. The relationship between permeability and stress is characterised by fracture compressibility, which is difficult and costly to be obtained from the field, but can be acquired easily from laboratory measurement. In this review article, the laboratory methods to obtain fracture compressibility were reviewed. Literature data on fracture compressibility for coals and shales were collated and the relationships between fracture compressibility and pressure, stress and rock properties were discussed. It is found that fracture compressibility is higher for coals than for shales, and the fracture compressibility for proppant supported fracture is even lower than that for the same shale or coal. Moreover, fracture compressibility is variable depending on gas type, gas pressure, and stress. Fracture compressibility has no correlation with absolute permeability in general, but has a weak positive correlation for the same sample.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    123
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
123
Top 1%
Top 10%
Top 1%
bronze