Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Coastal Engineeringarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oxford University Research Archive
Article . 2021
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Coastal Engineering
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Harmonic-induced wave breaking due to abrupt depth transitions: An experimental and numerical study

Authors: Peter Stansby; Yan Li; Yan Li; T. S. van den Bremer; Thomas A. A. Adcock; Samuel Draycott;

Harmonic-induced wave breaking due to abrupt depth transitions: An experimental and numerical study

Abstract

Abrupt depth transitions (ADTs) have been shown to induce the release of bound waves into free waves, which results in spatially inhomogeneous wave fields atop ADTs. Herein, we examine the role of free-wave release in the generation and spatial distribution of higher-harmonic wave components and in the onset of wave breaking for very steep periodic waves upon interaction with an ADT. We utilise a Smoothed Particle Hydrodynamics (SPH) model, making use of its ability to automatically capture breaking and overturning surfaces. We validate the model against experiments. The SPH model is found to accurately reproduce the phase-resolved harmonic components up to the sixth harmonic, particularly in the vicinity of the ADT. For the cases studied, we conclude that second-order free waves released at the ADT, and their interaction with the linear and second-order bound waves (beating), drive higher-order bound-wave components, which show spatial variation in amplitude as a result. For wave amplitudes smaller than the breaking threshold, this second-order beating phenomenon can be used to predict the locations where peak values of surface elevation are located, whilst also predicting the breaking location for wave amplitudes at the breaking threshold. Beyond this threshold, the contributions of the second-order and higher harmonics (second-harmonic amplitudes are up to 60% and sixth-harmonic up to 10% of the incident amplitude) cause breaking to occur nearer to the ADT, and hence the wave breaking onset location is confined to the region between the ADT and the first anti-node location of the second-order components. Counter-intuitively, we find that, at the point of breaking, steeper incident waves are found to display reduced non-linearity as a result of breaking nearer to the ADT.

Countries
Netherlands, United Kingdom
Keywords

Wave breaking, 535, Harmonic analysis, Smoothed Particle Hydrodynamics, Abrupt depth transitions, Non-linear waves, Free-wave release

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 12
    download downloads 11
  • 12
    views
    11
    downloads
    Data sourceViewsDownloads
    TU Delft Repository1211
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
16
Top 10%
Average
Top 10%
12
11
Green
bronze