Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Imperial College Lon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Combustion and Flame
Article . 2017 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Combustion and Flame
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2017
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2017
License: CC BY
Data sources: ZENODO
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame

Authors: Aimee S. Morgans; Jingxuan Li; Jingxuan Li; Xingsi Han; Yu Xia;

Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame

Abstract

Abstract A coupled numerical approach is investigated for predicting combustion instability limit cycle characteristics when the combustor contains a long flame. The test case is the ORACLES combustor, with a turbulent premixed flame a metre long: it exhibits limit cycle oscillations at ∼ 50 Hz and normalised velocity amplitude ahead of the flame of ∼ 0.29. The approach obtains the flame response to acoustic excitation using Large Eddy Simulations (LES), and couples this with a low-order wave-based network representation for the acoustic waves within the combustor. The flame cannot be treated as acoustically compact; the spatial distribution of both its response and the subsequent effect on the acoustics must be accounted for. The long flame is uniformly segmented axially, each segment being much shorter than the flow wavelengths at play. A series of “local” flame describing functions, one for the heat release rate response within each segment to velocity forcing at a fixed reference location, are extracted from the LES. These use the Computational Fluid Dynamics toolbox, OpenFOAM, with an incompressible approximation for the flow-field and combustion modelled using the Partially Stirred Reactor model with a global one-step reaction mechanism. For coupling with the low-order acoustic network modelling, compact acoustic jump conditions are derived and applied across each flame segment, while between flame segments, wave propagation occurs. Limit cycle predictions from the proposed coupled method agree well with those predicted using the continuous 1-D linearised Euler equations, validating the flame segmentation implementation. Limit cycle predictions (frequency 51.6 Hz and amplitude 0.38) also agree well with experimental measurements, validating the low-order coupled method as a prediction tool for combustors with long flames. A sensitivity analysis shows that the predicted limit cycle amplitude decreases rapidly when acoustic losses at boundaries are accounted for, and increases if combustor heat losses downstream of the flame are accounted for. This motivates more accurate determination of combustor boundary and temperature behaviour for thermoacoustic predictions.

Country
United Kingdom
Related Organizations
Keywords

Energy, General Chemical Engineering, 0904 Chemical Engineering, General Physics and Astronomy, Energy Engineering and Power Technology, General Chemistry, 0902 Automotive Engineering, 620, 510, Fuel Technology, European Research Council, 0913 Mechanical Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 1%
Top 10%
Top 1%
Green
hybrid