Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ King Abdullah Univer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Combustion and Flame
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An experimental study and analysis of lift-off length in inclined nonpremixed turbulent jet flames

Authors: Qiang Wang; Longhua Hu; Fei Tang; Adriana Palacios; Suk Ho Chung;

An experimental study and analysis of lift-off length in inclined nonpremixed turbulent jet flames

Abstract

The lifted flame behavior of inclined turbulent jets, considering the relative angle between the fuel jet momentum and flame buoyancy was investigated experimentally by varying the inclination angle of nonpremixed fuel jets. Variations of lift-off length from the flame base to the nozzle exit was quantified experimentally with nozzles of various diameters (2, 3, and 5 mm) and inclination angles (range of −90° to 90°). The data was analyzed based on the experimental finding of upstream preheating effect depending on inclination angles. Major findings are as follows: (1) The lift-off length (h) increases linearly with the increase in initial fuel jet velocity (ue) at a fixed inclination angle. The proportionality slope κ of the linear relationship between h versus ue decreases appreciably with jet inclination angle for the negatively inclined flames; while for the positively inclined flames, the lift-off length decreases relatively weakly. (2) Physical analysis on the flow characteristics of inclined jets was conducted, and the preheating effect was proposed based on the combustion behaviors, especially for the negatively inclined jet flames. The preheating temperatures of unburned fuel/air mixtures at the flame base and nozzle exit were experimentally quantified, revealing that the negatively inclination angle can have a significant influence on the preheating temperatures. (3) Based on the proposed preheating mechanism, a physical model accounting for the effect of jet inclination angle was developed to quantify the lift-off length of inclined jet flames. The proposed model successfully represented lift-off lengths at all the experimental conditions with various inclination angles and nozzle diameters. The present findings provide new data set and a reasonable physical model for lifted flame behavior of inclined turbulent jet flames, revealing the effect of the relative angle between fuel jet momentum and flame buoyancy. ; This work was supported jointly by National Key R&D Program of China (No. ...

Country
Saudi Arabia
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green