
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
COMANDO: A Next-Generation Open-Source Framework for Energy Systems Optimization

COMANDO: A Next-Generation Open-Source Framework for Energy Systems Optimization
Existing open-source modeling frameworks dedicated to energy systems optimization typically utilize (mixed-integer) linear programming ((MI)LP) formulations, which lack modeling freedom for technical system design and operation. We present COMANDO, an open-source Python package for component-oriented modeling and optimization for nonlinear design and operation of integrated energy systems. COMANDO allows to assemble system models from component models including nonlinear, dynamic and discrete characteristics. Based on a single system model, different deterministic and stochastic problem formulations can be obtained by varying objective function and underlying data, and by applying automatic or manual reformulations. The flexible open-source implementation allows for the integration of customized routines required to solve challenging problems, e.g., initialization, problem decomposition, or sequential solution strategies. We demonstrate features of COMANDO via case studies, including automated linearization, dynamic optimization, stochastic programming, and the use of nonlinear artificial neural networks as surrogate models in a reduced-space formulation for deterministic global optimization.
24 pages, 1 graphical abstract, 13 figures, 4 tables
- ETH Zurich Switzerland
- RWTH Aachen University Germany
- Forschungszentrum Jülich Germany
- Helmholtz Association of German Research Centres Germany
- Forschungszentrum Jülich GmbH Germany
info:eu-repo/classification/ddc/660, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control, info:eu-repo/classification/ddc/610
info:eu-repo/classification/ddc/660, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control, info:eu-repo/classification/ddc/610
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
