Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Electric...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Electrical Engineering
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clothing-to-words mapping using word separation method

Authors: Zhou, Jinglei; Ye, Mao; Ding, Jian; Wang, Haiyang; Li, Xue;

Clothing-to-words mapping using word separation method

Abstract

With the development of E-commerce, clothing search on Internet emerges to be a valuable and challenging problem. Compared with the standard image retrieval approach, there are two main difficulties in clothing search. The first is the numerous clothing variation. Another is that people like to search the clothing, which have the same visual elements under the numerous variation. Motivated by Graph Cut method, an approach called word separation method is proposed to map the clothing visual elements to words, which can simultaneously take into account the image-to-image relationship, the image-to-word relationship and the word-to-word relationship. In our work, the meaningful words from web pages are represented by the graph nodes. The graph edges are weighted by the context of data set, which is from Internet. The experimental results on the clothing data set demonstrate the efficiency, effectiveness and robustness of our method.

Country
Australia
Keywords

2208 Electrical and Electronic Engineering, Shape, 2207 Control and Systems Engineering, 006, Scene, Energy minimization, 1700 Computer Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average