Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Construction and Building Materials
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
http://dx.doi.org/10.1016/j.co...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermo-physical and mechanical investigation of cementitious composites enhanced with microencapsulated phase change materials for thermal energy storage

Authors: Sam M.; Caggiano A.; Dubyey L.; Dauvergne J. -L.; Koenders E.;

Thermo-physical and mechanical investigation of cementitious composites enhanced with microencapsulated phase change materials for thermal energy storage

Abstract

This paper reports a comprehensive experimental investigation of cement pastes enhanced with Microencapsulated Phase Change Materials (MPCM) for Thermal Energy Storage (TES) purposes. The experimental plan considers three water-to-binder ratios and three MPCM volume fractions, for a total of nine different MPCM paste mixtures. The water-to-binder ratios of the pastes are 0.33, 0.40 and 0.45, which were mixed with a commercial MPCM, namely Nextek 37D® having a melting/solidification temperature of 37 °C, with volume percentage substitutions of 0%, 20% and 40%, respectively. Thermal, physical and mechanical tests were performed to investigate the effect MPCM have on the resulting TES, strengths and conductive properties of the considered mixtures by employing DSC, Hot-Disk, and mechanical tests. The measured latent heat of MPCM was 197.3 J/g and 194.6 J/g for heating and cooling, respectively. The volumetric latent enthalpies for the MPCM-based composites showed an almost constant average of 20–25 MJ/m3 for samples with 20% MPCM and 55–60 MJ/m3 for samples with 40% MPCM, independently of the w/b ratio. Thermal conductivity values measured at 25 and 45 °C ranged between 0.93 and 0.44 W/m × K. MPCM substitution turned out to significantly affect the overall porosity of the composite resulting in a lower thermal conductivity for the MPCM-pastes in comparison to the plain cement matrix. Finally, mechanical tests were conducted that showed a strength loss due to either increasing w/b ratios or for enhanced amounts of MPCM (e.g., up to a 74% and 69% of strength loss were registered for bending and compression, respectively). The thermo-physical and mechanical characterizations were conducted according to an experimental plan that provided a wide set of research results for both sole MPCM and MPCM-cement systems analyzed by SEM, EDS/elemental mapping, contact angle tests, particle size distribution analysis and Mercury Intrusion Porosimetry technique.

Country
Italy
Related Organizations
Keywords

DSC; Enthalpy; Heating and Cooling; Hot-Disk; Latent and Sensible Heat; Mechanical Properties; MPCM; Porous cementitious systems; SEM; Thermal Energy Storage

Powered by OpenAIRE graph
Found an issue? Give us feedback