Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carbon Resources Con...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Resources Conversion
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carbon Resources Conversion
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pyrolysis of biomass to produce H-rich gas facilitated by simultaneously occurring magnesite decomposition

Authors: Mengjuan Zhang; Cong Zhang; Binwenbo Zhu; Chao Wang; Xin Jia; Guoqing Guan; Xi Zeng; +3 Authors

Pyrolysis of biomass to produce H-rich gas facilitated by simultaneously occurring magnesite decomposition

Abstract

This study investigated how biomass pyrolysis varies with the different fractions of magnesite mixing into biomass. The pyrolysis occurred with simultaneous decomposition of magnesite without use of any gasification reagent, and was analyzed in terms of producer gas yield and quality. As magnesite fraction increased from 0 to 30 %, the yield of producer gas and its calorific value increased from 48.6 % to 66.3 % and 8.29 to 8.93 MJ/Nm3, respectively. The carbon and hydrogen conversion increased from 44.1 % to 60.7 % and 43.1 % to 66.2 %, respectively. The characterization results revealed that magnesite particles facilitated the conversion of fixed carbon and the thermal/catalytic cracking of tar to produce H-rich gas. The in-situ generated CO2 from magnesite decomposition could be reduced to CO/CH4 in the reductive atmosphere of the pyrolysis products. This study proposes the concept of converting low-energy–density biomass into gas without oxygen and provides a novel approach for producing H-rich gas from biomass.

Related Organizations
Keywords

Magnesite decomposition, Chemical technology, Thermal conversion, Biomass, TP1-1185, H-rich gas, Pyrolysis

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research