
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat

The primary goal of this research is to examine the thermal variance in a dovetail fin under fully wet conditions with ternary hybrid nanofluid ZnFe2O4 +MnZnFe2O4 +NiZnFe2O4- H2O taking temperature and humidity ratio differences into account as driving forces for heat and mass transfer systems, respectively. The consequences of surface convection, radiation, and internally generated heat on the heat exchange of the fin have been taken into account. The mathematical modeling involves dimensionless transformation to convert the balanced energy equation to ordinary differential equation, and the problem is then solved numerically as well as analytically using the fourth-fifth order Runge-Kutta-Fehlberg's (RKF) methodology and DTM-Pade approximant. The significance of major thermal parameters such as radiation-conduction, wet factor, heat generation, and the ambient temperature variable on the temperature profile is explored graphically, contributing to an analysis of thermal performance. As the main outcome, ternary hybrid nanoliquid exhibits higher thermal response compared to mono and binary hybrid nanoliquid. Also, the thermal dispersion is higher for the lower values of wet parameter and radiative variable.
- Mansoura University Egypt
- Sukkur IBA University Pakistan
- Sukkur IBA University Pakistan
- Chandigarh University India
- National University of Malaysia Malaysia
Dovetail fin, Nanofluid, Engineering (General). Civil engineering (General), Heat transfer, Wetted fin, Ternary hybrid nanofluid, TA1-2040
Dovetail fin, Nanofluid, Engineering (General). Civil engineering (General), Heat transfer, Wetted fin, Ternary hybrid nanofluid, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).234 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
