
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Three parametric Prabhakar fractional derivative-based thermal analysis of Brinkman hybrid nanofluid flow over exponentially heated plate

Fractional calculus yields numerous implementations in different fields such as biological materials, physical memory, oscillation, wave propagation, and viscoelastic dynamics. Due to the significant applications of fractional calculus, the current study deals with the fractional derivative base study of a Brinkman hybrid nanofluid with an inclined magnetic field. A three-parametric Prabhakar fractional derivative with the involvement of the Mittag-Leffler function is implemented. A vertical plate moving with exponential velocity is considered to be the source of the flow mechanism. Moreover, the effects of exponential heating are incorporated into the thermal analysis. An appropriate group of dimensionless ansatz is adopted to get the dimensionless setup of equations. The Prabhakar fractional operator is implemented in the dimensionless equations which are further tackled by an effectual Laplace transform technique. An inverse Stehfest method and Tzou's method are implemented to tackle the inversion of the Laplace transform. This study exhibits that the fractional constraints minimize both the fields of temperature and velocity. Moreover, the velocity distribution deteriorates corresponding to the improved Brinkman parameter. The Brinkman parameter and the fluid's viscosity are directly related to each other. With the improved Brinkman parameter, the viscosity of the fluid increases. As a result, the fluid motion decreases.
- Prince Sultan University Saudi Arabia
- Ostim Technical University Turkey
- Future University in Egypt Egypt
- Quaid-i-Azam University Pakistan
- Future University in Egypt Egypt
Inclined magnetic field, Exponential heating, Hybrid nanofluid, Engineering (General). Civil engineering (General), Brinkman fluid, Three parametric Mittag-Leffler function, TA1-2040, Prabhakar fractional derivative
Inclined magnetic field, Exponential heating, Hybrid nanofluid, Engineering (General). Civil engineering (General), Brinkman fluid, Three parametric Mittag-Leffler function, TA1-2040, Prabhakar fractional derivative
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
