Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Case Studies in Thermal Engineering
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Case study of thermal and solutal aspects on non-Newtonian Prandtl hybrid nanofluid flowing via stretchable sheet: Multiple slip solution

Authors: MD. Shamshuddin; Zehba Raizah; Nevzat Akkurt; Vishwambhar S. Patil; Sayed M. Eldin;

Case study of thermal and solutal aspects on non-Newtonian Prandtl hybrid nanofluid flowing via stretchable sheet: Multiple slip solution

Abstract

The effect of multiple slip boundary conditions is one more important physical parameter on the flow investigation and have been studied in this analysis. Further, the effect of Ohmic heating and varying chemical reaction on non-Newtonian Prandtl hybrid nanofluid with water based nanofluids to an extending of leading edge was also investigated to this current analysis. An inclined magnetic field is introduced to fluid flow to regulate the fluid stream. Hybrid nanomaterial is synthesized by the dispersion of Cu and Cofe2O4 nanoparticles in Prandtl fluid. All chemical science specifications of nanofluid are measured as constant. Due to the nanofluid particles motion, the fluid concentration is inspected underneath chemical implications. A mathematical model is developed by assuming the flow as incompressible and purely cartesian coordinate system and appropriate non-dimensional variables are introduced for problem simplifications and dimensional analysis. The scheme for semi analytical study named Homotopy Analysis Method (HAM) is implied to get solutions to the equations. The procedure is then displayed pictorially where fluid velocity, temperature and concertation against various pertinent parameters are examined. It was found that, the Concentration field profiles have been shown to deteriorate because molecule diffusivity reduces as the chemical reaction parameter rises in both cases. In order to maintain thermal balance management in tiny heat density equipment and gadgets, current research may also be helpful in enhancing the thermal efficiency of heat exchangers.

Keywords

Prandtl Hybrid nanofluid, Engineering (General). Civil engineering (General), Varying reaction, Homotopy analysis method, Ohmic heating, Nanoparticles, TA1-2040

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
gold