Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Case Studies in Ther...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Case Studies in Thermal Engineering
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative summer thermal performance analysis between open ventilated facade and modular living wall

Authors: Zaloa Azkorra-Larrinaga; Naiara Romero-Anton; Koldobika Martin-Escudero; Gontzal Lopez-Ruiz; Catalina Giraldo-Soto;

Comparative summer thermal performance analysis between open ventilated facade and modular living wall

Abstract

In recent years, passive solutions for building envelopes have become much more common due to their capacity to decrease the heat flux through the envelope during summer time. Vertical greenery systems (VGS) are emerging as an interesting method of decreasing the thermal demand of cities, and also improving the quality of urban life. Open ventilated facades (OVF) have gained popularity due to their capacity to enhance the thermal resistance of the building envelope. As part of a project carried out in a Paslink cell in Vitoria-Gasteiz, an experimental campaign with full-scale VGS and OVF was carried out during the summer season to assess the thermal performance of a modular living wall (MLW) with respect to an OVF. The objective is to demonstrate that a stochastic differential equations (SDE) model can be used to assess the cooling requirements of an MLW and an OVF. An analysis was carried out to evaluate how different characteristics of the main facade affect performance, such as thermal resistance, solar absorption coefficient and convection coefficient. The results of these experiments show that both MLW (46 %) and OVF (67 %) configurations significantly minimize solar heat loads compared to non-passive bare wall (BW) facades, which are the reference configurations.

Related Organizations
Keywords

Open ventilated facade, Energy performance, Engineering (General). Civil engineering (General), Passive cooling, Modular living wall, TA1-2040, PASLINK test cell

Powered by OpenAIRE graph
Found an issue? Give us feedback