Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conservation opportunities through improved management of recently established protected areas in Southeast Asia

Authors: Rachakonda Sreekar; Lian Pin Koh; Aakash Lamba; Christos Mammides; Hoong Chen Teo; Adrian Dwiputra; Yiwen Zeng;

Conservation opportunities through improved management of recently established protected areas in Southeast Asia

Abstract

Protected areas (PAs) play a crucial role in biodiversity conservation and climate change mitigation.1,2 However, ineffective management can lead to biodiversity loss and carbon emissions from deforestation.3,4,5,6 To address this issue and explore viable solutions, we assessed the impact of PA establishment on avoided deforestation in 80 Southeast Asian PAs using the synthetic control approach.7,8 Our results show that 36 PAs successfully prevented 78,910 ha of deforestation. However, the remaining 44 PAs lost 72,497 ha of forest, impacting the habitat of 226 threatened bird and mammal species. Effective management of these reserves could have potentially avoided up to 2.07 MtCO2e yr-1 in carbon emissions. We estimate that at least $17 million USD per year in additional funding is required to better manage these 44 ineffective PAs and reduce future emissions. Furthermore, we demonstrate that carbon markets have the potential to generate these funds by reducing carbon emissions from deforestation within protected areas. Our findings emphasize that improving PA management is an essential nature-based solution for conserving biodiversity and mitigating climate change.

Country
Singapore
Keywords

Mammals, Conservation of Natural Resources, 550, Climate Change, 577, Biodiversity, Forests, Birds, Carbon financing, Earth and Environmental Sciences, Animals, Protected area management, Asia, Southeastern, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research