Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dendrochronologiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Dendrochronologia
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Dendrochronologia
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2021
License: CC BY
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The utility of bulk wood density for tree-ring research

Authors: Kristina Seftigen; Kristina Seftigen; Anna Neycken; Georg von Arx; Georg von Arx; Petter Stridbeck; Patrick Fonti; +3 Authors

The utility of bulk wood density for tree-ring research

Abstract

Bulk wood density measurements are recognized for their utility in ecology, industry, and biomass estimations. In tree-ring research, microdensitometric techniques are widely used, but their ability to determine the correct central tendency has been questioned. Though rarely used, it may be possible to use bulk wood density as a tool to check the accuracy of and even correct microdensitometric measurements. Since measuring bulk wood density in parallel with X-ray densitometry is quickly and easily done, we suspect that its omission is largely due to a lack of awareness of the procedure and/or its importance. In this study, we describe a simple protocol for measuring bulk wood density tailored for tree-ring researchers and demonstrate a few possible applications. To implement real-world examples of the applications, we used a sample of existing X-ray and Blue Intensity (BI) measurements from 127 living and dead Pinus sylvestris trees from northern Sweden to produce new measurements of bulk wood density. We can confirm that the central tendency in this sample material is offset using X-ray densitometry and that the diagnosis and correction of X-ray density is easily done using bulk wood density in linear transfer functions. However, this approach was not suitable for our BI measurements due to heavy discoloration. Nevertheless, we were able to use bulk wood density to diagnose and improve the use of deltaBI (latewood BI – earlywood BI) with regard to its overall trends and multi-centennial variability in a dendroclimatological application. Moreover, we experimented with percent of latewood width, scaled with bulk wood density, as a time- and cost-effective proxy for annual ring density. Although our reconstruction only explains about half of the variation in ring density, it is most likely superior to using fixed literature values of density in allometric equations aimed at biomass estimations. With this study, we hope to raise new awareness regarding the versatility and importance of bulk wood density for dendrochronology by demonstrating its simplicity, relevance, and applicability.

Dendrochronologia, 69

ISSN:1125-7865

ISSN:1612-0051

Countries
Switzerland, Switzerland
Keywords

Dendroclimatology, blue intensity, X-ray density, Gravimetric-volumetric wood density, Biomass, Gravimetric-volumetric wood density; Dendroclimatology; Biomass; blue intensity; X-ray density

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%