
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models

In this paper, two studies are carried out related to the performance simulation and analysis of a wind-powered seawater reverse osmosis (SWRO) desalination plant prototype installed on the island of Gran Canaria (Spain). Three machine learning techniques (artificial neural networks, support vector machines and random forests) were implemented to predict the performance (pressure, feed flow rate and permeate flow rate, and permeate conductivity) of the SWRO desalination plant. Subsequently, plant operation was analysed in two different operating modes: a) constant pressure and flow rate through connection with a wind-battery microgrid, b) variable pressure and flow rate as a function of the power supplied by a stand-alone wind microgrid without energy storage. The paper supports two main outcomes. First, support vector machines and random forests are significantly (5% significance level) better predictors of the plant's performances than neural networks. Second, over one year, the operating mode that considers variable pressure and flow rate operates more continuously (higher operating frequencies and lower stop/start frequencies) than the constant pressure and flow rate alternative; however 1.2 times less permeate with 1.08 higher conductivity is produced on an annual basis. 1,689 6,035 Q1 Q1 SCIE
3322 Tecnología energética, Microgrid, Desalination, 3311 tecnología de la instrumentación, 332202 Generación de energía, Machine learning, 331101 Tecnología de la automatización, Sea water reverse osmosis, Wind energy
3322 Tecnología energética, Microgrid, Desalination, 3311 tecnología de la instrumentación, 332202 Generación de energía, Machine learning, 331101 Tecnología de la automatización, Sea water reverse osmosis, Wind energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).69 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
