
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG)

Abstract Water scarcity is viewed as the top global risk for the next decade. One way to resolve water shortage is desalination which expends energy to derive fresh water from the vast amount of saline water. While the current desalination technologies are matured and reliable, desalinating seawater is still an energy intensive process, necessitating research for new generation desalination technology with lower energy consumption. Previously, our group proposed an innovative hydrate based desalination utilizing LNG cold energy (ColdEn-HyDesal) which reported a low specific energy consumption of 0.84 kWh/m3. In this work, we further evaluate the economic feasibility of ColdEn-HyDesal in Singapore. With a regasification rate of 200 t/h, the ColdEn-HyDesal facility simulated in this study produces 260 m3 water per hour. Through a comprehensive evaluation of the capital and operating costs, we observed significant reduction in the levelized cost of water (LCOW) from $9.31/m3 to $1.11/m3 with cold energy integration. The effect of water recovery rate, plant capacity and geological locations were analysed. Finally, the costs of water via the ColdEn-HyDesal process at various scales were benchmarked with matured desalination technologies, revealing that ColdEn-HyDesal technology is economically favourable at larger scale.
- Dalian Polytechnic University China (People's Republic of)
- National University of Singapore Singapore
- Dalian Polytechnic University China (People's Republic of)
- China University of Petroleum, Beijing China (People's Republic of)
- China University of Petroleum, Beijing China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).102 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
