Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Desalinationarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Desalination
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Desalination
Article . 2021
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decentralized brackish water reverse osmosis desalination plant based on PV and pumped storage - Technical analysis

Authors: Sanna, Anas; Buchspies, Benedikt; Ernst, Mathias; Kaltschmitt, Martin;

Decentralized brackish water reverse osmosis desalination plant based on PV and pumped storage - Technical analysis

Abstract

Abstract Photovoltaic driven decentralized reverse osmosis plants for brackish water desalination offer a sustainable and low-emission solution for water deficiency problems, especially in arid and semi-arid regions. However, the primary challenge for this combination is how a brackish water reverse osmosis desalination (BWRO) plant based on photovoltaics (PV) can be operated continuously with high energy efficiency. Therefore, this study presents an innovative concept for a BWRO plant operated 24 h/d with a constant drinking water production capacity based on PV and pumped storage as hydraulic energy storage. The latter is used to cover the hydraulic energy consumption of the BWRO process completely or partially in times when the necessary electrical power cannot be provided by the PV plant due to missing solar radiation. During the course of the year, only 2% of the hydraulic energy to be stored in the pumped storage is lost during charging and discharging. The overall efficiency (from PV electricity to used hydraulic energy) of the pumped storage in the investigated innovative system is 78.4%. This value is 2.4% higher than the overall efficiency for a battery system with a high pressure pump in the current designs for BWRO based on PV and battery.

Related Organizations
Keywords

Reverse osmosis, Brackish water desalination, Photovoltaics, Pumped storage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%