Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Diposit Digital de l...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Diamond and Related Materials
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrochemical properties of CNT doped nanoporous tin oxide hybrid electrode formed on cold spray tin coating for supercapacitor application

Authors: Zarei, Mohammad; Nourouzi, Salman; Jamaati, Roohollah; García Cano, Irene; Sarret i Pons, Maria; Dosta Parras, Sergi; Esmaeili-Faraj, S.H.;

Electrochemical properties of CNT doped nanoporous tin oxide hybrid electrode formed on cold spray tin coating for supercapacitor application

Abstract

In the present study, tin oxide film with regular nano-channels was formed on the surface of cold sprayed tin coating by the anodizing process. The microstructure of the samples was investigated by field-emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The results show that annealing the samples with the assistance of water leads to the formation of crystalline particles on the inner surface of the nanotubes by the dissolution-precipitation mechanism. The electrochemical performance of the nanoporous tin oxide film was evaluated as an electrode by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Being employed as the supercapacitor electrode materials, the electrode revealed a specific capacitance of 0.0176 F/cm2 at a current density of 0.1mA/cm2. The appropriate capacitive properties were due to the morphology and SnO2 active materials grown on the inside wall of the nanoporous structure, resulting in the enhancement of the active surface area. The investigation of the effect of the preferred orientation on the capacitance of the produced films shows that (0 2 0) and (0 3 1) have a very positive effect on the capacitive properties of the samples. Also, (1 1 0) and (0 1 1) preferred orientation has caused a sharp decrease in capacity

Country
Spain
Related Organizations
Keywords

Carbó, Pel·lícules fines, Coal, Thin films, Microscòpia electrònica de transmissió, Transmission electron microscopy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Related to Research communities
Energy Research