
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Internet of things dataset for home renewable energy management

Smart cities, as well as smart homes research, are becoming of concern, especially in the field of energy consumption and production. However, there is a lack in the dataset that can be used to simulate smart city energy consumption and prediction or even smart homes. Therefore, this paper provides a carefully generated dataset for smart home energy management simulation. Five datasets are generated and analysed to ensure suitability, including 20, 50, 100, and 200 homes across 365 days. For more accurate data, energy consumption and production for 50 homes are generated based on real input taken from a dataset for homes in Saudi Arabia. Due to the unavailability of a comprehensive dataset related to the complex scenario of smart home sensors, energy consumption, and peer-to-peer data exchange, synthetic data was generated to support the simulation of smart home energy generation and consumption. This synthetic data plays a crucial role in situations where simulating uncommon events, ensuring data availability, facilitating extensive experimentation and model validation, and enabling scalability are paramount. It offers a valuable opportunity to incorporate these rare yet significant occurrences into the simulation, particularly in the context of infrequent events, such as abnormal energy consumption patterns observed in smart homes. The generated data is analysed and validated in this article, ready to be used for many smart home and city research.
- University of Nizwa Oman
- University of Nizwa Oman
- Cairo University Egypt
IoT, Renewable energy, Science (General), Computer applications to medicine. Medical informatics, R858-859.7, Management, Q1-390, Smart home, Invited Data Manuscript, AI, energy production, Dataset
IoT, Renewable energy, Science (General), Computer applications to medicine. Medical informatics, R858-859.7, Management, Q1-390, Smart home, Invited Data Manuscript, AI, energy production, Dataset
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
