Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Drug and Alcohol Dep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Drug and Alcohol Dependence
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acute alcohol intake alters resting state functional connectivity of nucleus accumbens with pain-related corticolimbic structures

Authors: Bethany Stennett; Michael E. Robinson; Jeff Boissoneault;

Acute alcohol intake alters resting state functional connectivity of nucleus accumbens with pain-related corticolimbic structures

Abstract

The nucleus accumbens (NAc) is a ventral striatal structure underlying reward, reinforcement, and motivation, with extensive anatomic and functional connections to a wide range of affective processing structures (medial prefrontal cortex (mPFC), amygdala, and insula). Characterizing how acute alcohol intake affects resting state functional connectivity (rsFC) between the nucleus accumbens (NAc) and these regions will improve mechanistic understanding of alcohol's neurobehavioral effects, including the neural overlap between acute alcohol effects and pain processing.Fifteen healthy social drinkers (10 women; age: 25-45 years) were included in the study. Participants completed one session in which they consumed an alcohol dose targeting a breath alcohol concentration of 0.08 g/dL, and in a second a placebo beverage. Nine-minute resting state fMRI scans were acquired 30-35 min after beverage administration during each session. rsFC between NAc and a priori corticolimbic regions of interest (mPFC, amgydala, and insula), were compared between beverage conditions. We also conducted an exploratory whole-brain seed-to-voxel analysis of NAc FC.Alcohol intake reduced rsFC between NAc and mPFC, as well as NAc and amygdala. Alcohol also reduced rsFC between NAc and a 97-voxel cluster including bilateral paracingulate cortex and anterior cingulate cortex.Findings suggest that acute alcohol intake reduces rsFC between NAc and several structures, including mPFC, amygdala, and rostral ACC in healthy social drinkers. These structures underlie reward, motivated behavior, and emotion regulation, and may provide mechanistic insight to how alcohol affects related processes, including pain.

Related Organizations
Keywords

Adult, Cerebral Cortex, Male, Brain Mapping, Alcohol Drinking, Ethanol, Prefrontal Cortex, Middle Aged, Amygdala, Magnetic Resonance Imaging, Nucleus Accumbens, Neural Pathways, Humans, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
bronze