Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Conversion an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Conversion and Management: X
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Conversion and Management: X
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic assessment of a triple cascade refrigeration system utilizing hydrocarbon refrigerants for ultra-low temperature applications

Authors: Md Walid Faruque; Mahdi Hafiz Nabil; Mohammed Raihan Uddin; M. Monjurul Ehsan; Sayedus Salehin;

Thermodynamic assessment of a triple cascade refrigeration system utilizing hydrocarbon refrigerants for ultra-low temperature applications

Abstract

This work presents a detailed thermodynamic analysis of a triple cascade vapor refrigeration system (TCRS) utilizing hydrocarbon refrigerants for ultra-low temperature application. Different hydrocarbon refrigerants pairs are used in different circuits (High temperature circuit HTC, Mid temperature circuit MTC, and Low temperature circuit LTC) to obtain the most suitable refrigerant combination by mathematical modeling of the system. The design and operating parameters considered in this study include (1) evaporator temperature (2) LTC condensation temperature (3) MTC condensation temperature. A thermodynamic analysis consisting of energy and exergy analysis were employed in terms of operating conditions to obtain COP, total compressor work, exergy efficiency, total exergy destruction, mass flow rate and discharge temperatures of compressors. Furthermore, an analysis on component exergy destruction was conducted to show the possibilities of improvement of TCRS utilizing the hydrocarbon refrigerants. The results suggest that at different evaporator temperatures different hydrocarbon refrigerants on TCRS give higher COP and exergy efficiency. The highest COP and exergy efficiency at −100 °C evaporator temperature was calculated to be 0.5931 and 54.446 %, respectively. This study also suggests that hydrocarbon refrigerants can be used in ultra-low temperature applications without compromising the thermodynamic performance of the refrigeration system.

Keywords

Exergy analysis, Hydrocarbon refrigerants, Ultra-low temperature, TA1-2040, Environment friendly refrigerants, Engineering (General). Civil engineering (General), Cascade refrigeration system, COP

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold