Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Conversion an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Conversion and Management: X
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2025
License: CC BY
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Extraction and characterization of Cucumis melon seeds (Muskmelon seed oil) biodiesel and studying its blends impact on performance, combustion, and emission characteristics in an internal combustion engine

Authors: K. Al-Bawwat, Ala'a; Gomaa, Mohamed R.; Cano Ortega, Antonio; Jurado, Francisco; Alsbou, Eid;

Extraction and characterization of Cucumis melon seeds (Muskmelon seed oil) biodiesel and studying its blends impact on performance, combustion, and emission characteristics in an internal combustion engine

Abstract

This study examines the performance, combustion, and emissions characteristics of a single-cylinder internal combustion diesel engine when fueled with a blend of diesel and biodiesel derived from muskmelon seeds. The kinematic viscosity of the extracted muskmelon seed oil was 6.1 cSt at 40 °C, which is higher than the kinematic viscosity of petroleum diesel of 2.6 cSt. Muskmelon biodiesel was further analyzed using thin-layer chromatography (TLC) and high-voltage separator tests. A comparison of the fuel properties of muskmelon biodiesel with conventional diesel fuel revealed that muskmelon biodiesel could be used alone or in a diesel–biodiesel blend to fuel compression diesel engines. In this study, muskmelon seed biodiesel was blended with diesel fuel at proportions of 10 %, 20 %, and 50 % (BD10, BD20, and BD50, respectively). At a relatively low rotational speed of 1200 rpm, the brake thermal efficiency (BTE) of the engine operated with BD10 and BD20 blends were 36.1 % and 36.0 %, respectively, while the brake-specific fuel consumption (BSFC) of the two blends were 0.260 kg/kWh, and 0.262 kg/kWh, respectively. These values closely resemble those typically observed in diesel fuel engines. Indeed, the average BTE of the BD20 blend was only 3.24 % less than the average BTE of diesel fuel. Diesel fuel generates less NOx and SO2 emissions compared to biodiesel blends: BD100 emitted the most NOx pollution of all fuels tested. In addition, BD10 released significantly more SO2 emissions compared to the other fuels tested. However, the BD20 blend outperformed all other blends in terms of CO, NOx, and SO2 emissions at high engine speeds. The only exception was H2S emissions, which were higher than BD50 and BD100. BD20 also exhibited significantly reduced CO emissions compared to diesel fuel, while BD10 emitted significantly more CO emissions than the other biodiesel blends. Our findings revealed that BD20 exhibited the best engine performance and lower emissions among all fuels tested. In other words, BD20 is the ideal fuel blend for use in diesel engines and does not require any alterations to the engine. Muskmelon waste seeds represent a non-edible waste stream that can be exploited in the production of biodiesel fuel, allowing for the upcycling of a potentially problematic thermochemical conversion feedstock. This potentially valuable use for waste muskmelon seeds in the energy sector could address the wastefulness associated with this particular waste stream.

Keywords

TA1-2040, Engineering (General). Civil engineering (General)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
gold