Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Climate Change Ecolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate Change Ecology
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climate Change Ecology
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variation across space, species and methods in models of spring phenology

Authors: C.J. Chamberlain; E.M. Wolkovich;

Variation across space, species and methods in models of spring phenology

Abstract

Predicting spring phenology in temperate forests is critical for forecasting important processes such as carbon storage. One major forecasting method for phenology is the growing degree day (GDD) model, which tracks heat accumulation. Forecasts using GDD models typically assume that the GDD threshold for a species is constant across diverse landscapes, but increasing evidence suggests otherwise. Shifts in climate with anthropogenic warming may change the required GDD. Variation in climate across space may also lead to variation in GDD requirements, with recent studies suggesting that fine-scale spatial variation in climate may matter to phenology. Here, we combine simulations, observations from an urban and a rural site, and Bayesian hierarchical models to assess how consistent GDD models of budburst are across species and space. We built GDD models using two different methods to measure climate data: on-site weather stations and local dataloggers. We find that estimated GDD thresholds can vary up to 20% across sites and methods. Our results suggest our studied urban site requires fewer GDDs until budburst and may have stronger microclimate effects than the studied rural site, though these effects depend on the method used to measure climate. Further, we find that GDD models are less accurate for early-active species and may become less accurate with warming. Our results suggest that local-scale forecasts based on GDD models for spring phenology should incorporate these inherent accuracy issues of GDD models, alongside the variations we found across space, species and warming. Testing whether these issues persist at larger spatial scales could improve forecasts for temperate forests.

Keywords

Ecology, Urban heat island, Microclimate, Growing degree days, Phenology, Forest communities, Climate change, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold