
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Bio-electrical stimulation process on degradation of Phenanthrene from aqueous solution using a novel anode modified with carbon cloth: Operational performance, microbial activity and energy

pmid: 35643029
Phenanthrene as the hazardous PAHs-component are extensively detected in industrial wastewater. However, the impacts of bioelectrostimulation process on Phenanthrene degradation in aerobic reactors remained unclear. Here, a novel bioelectrostimulation process equipped with carbon cloth as electrodes was developed to investigate the removal efficiency of Phenanthrene and ATPase enzyme activity in the synthetic wastewater. The results obtained from the present study indicated that a complete Phenanthrene degradation (100%) can be achieved using microbial electrostimulation systems steel mesh coated with carbon cloth (MES-CC) as anode under optimal operational conditions (electrical current: 4 mA, HA concentration: 15 mg L-1) within 18 h. The conductive carbon cloth provides a biofilm carrier to easily transfer the electrons between electrodes and microbial communities. In addition, the highest ATPase enzyme activity (5176 U) was observed when the aerobic MES-CC reactors were operated with electrical current 4 mA. Furthermore, the COD removal efficiency in MES-CC increased from 49% to 96% when the C: N ratio decreased from 20 to 5. The highest value of Vmax in MES-CC for suspended and attached growth were determined to be 2.87 and 0.54 g COD g-1 biomass. Overall, the results demonstrated that MES equipped with carbon cloth and continuous electrical current mode has good potential for efficient Phenanthrene wastewater treatment.
- Guilan University of Medical Sciences Iran (Islamic Republic of)
- Guilan University of Medical Sciences Iran (Islamic Republic of)
- Tarbiat Modares University Iran (Islamic Republic of)
- Tarbiat Modares University Iran (Islamic Republic of)
Adenosine Triphosphatases, Bioelectric Energy Sources, Phenantherene, Phenanthrenes, Wastewater, Energy analysis, Environmental pollution, Carbon, Electric Stimulation, Environmental sciences, TD172-193.5, Electrical stimulation, GE1-350, Enzyme activity, Electrodes, Biokinetic
Adenosine Triphosphatases, Bioelectric Energy Sources, Phenantherene, Phenanthrenes, Wastewater, Energy analysis, Environmental pollution, Carbon, Electric Stimulation, Environmental sciences, TD172-193.5, Electrical stimulation, GE1-350, Enzyme activity, Electrodes, Biokinetic
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
