Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Indicator...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Indicators
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Indicators
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2016
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2016
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sustainable urban electricity supply chain – Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life

Authors: Viviana Cigolotti; Enrica Leccisi; Fabiana Corcelli; Valeria Fiandra; Marco Tammaro; Lucio Sannino; Sergio Ulgiati; +3 Authors

Sustainable urban electricity supply chain – Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life

Abstract

Abstract Solar photovoltaic (PV) electricity has the potential to be a major energy solution, sustainably suitable for urban areas of the future. However, although PV technology has been projected as one of the most promising candidates to replace conventional fossil based power plants, the potential disadvantages of the PV panels end-of-life (EoL) have not been thoroughly evaluated. The current challenge concerning PV technology resides in making it more efficient and competitive in comparison with traditional fossil powered plants, without neglecting the appraisal of EoL impacts. Indeed, considering the fast growth of the photovoltaic market, started 30 years ago, the amount of PV waste to be handled and disposed of is expected to grow drastically. Therefore, there is a real need to develop effective and sustainable processes to address the needed recycle of the growing number of decommissioned PV panels. Many laboratory-scale or pilot industrial processes have been developed globally during the years by private companies and public research institutes to demonstrate the real potential offered by the recycling of PV panels. One of the tested up lab-scale recycling processes – for the crystalline silicon technology – is the thermal treatment, aiming at separating PV cells from the glass, through the removal of the EVA (Ethylene Vinyl Acetate) layer. Of course, this treatment may entail that some hazardous components, such as Cd, Pb, and Cr, are released to the environment, therefore calling for very accurate handling. To this aim, the sustainability of a recovery process for EoL crystalline silicon PV panels was investigated by means of Life Cycle Assessment (LCA) indicators. The overall goal of this paper was to compare two different EoL scenarios, by evaluating the environmental advantages of replacing virgin materials with recovered materials with a special focus on the steps and/or components that can be further improved. The results demonstrate that the recovery process has a positive effect in all the analyzed impact categories, in particular in freshwater eutrophication, human toxicity, terrestrial acidification and fossil depletion indicators. The main environmental benefits arise from the recovery of aluminum and silicon. In particular, the recovered silicon from PV waste panels would decrease the need for raw silicon extraction and refining in so lowering the manufacturing costs, and end-of-life management of PV panels. Moreover, the amount of the recovered materials (silicon, aluminum and copper, among others) suggests a potential benefit also under an economic point of view, based on present market prices.

Country
Italy
Keywords

Life Cycle Assessment, c-Si photovoltaic panel; Life Cycle Assessment; Recycling; Thermal treatment; Decision Sciences (all); Ecology, Evolution, Behavior and Systematics; Ecology, C-Si photovoltaic panel; Life Cycle Assessment; Recycling; Thermal treatment; Ecology; Decision Sciences (all); Ecology, Evolution, Behavior and Systematics, Thermal treatment, Recycling, c-Si photovoltaic panel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 135
  • 3
    views
    135
    downloads
    Data sourceViewsDownloads
    ZENODO3135
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
112
Top 1%
Top 10%
Top 1%
3
135
Green
gold