
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Physical-based training data collection approach for data-driven lithium-ion battery state-of-charge prediction

Data-Driven approaches for State of Charge (SOC) prediction have been developed considerably in recent years. However, determining the appropriate training dataset is still a challenge for model development and validation due to the considerably varieties of lithium-ion batteries in terms of material, types of battery cells, and operation conditions. This work focuses on optimization of the training data set by using simple measurable data sets, which is important for the accuracy of predictions, reduction of training time, and application to online estimation. It is found that a randomly generated data set can be effectively used for the training data set, which is not necessarily the same format as conventional predefined battery testing protocols, such as constant current cycling, Highway Fuel Economy Cycle, and Urban Dynamometer Driving Schedule. The randomly generated data can be successfully applied to various dynamic battery operating conditions. For the ML algorithm, XGBoost is used, along with Random Forest, Artificial Neural Network, and a reduced-order physical battery model for comparison. The XGBoost method with the optimal training data set shows excellent performance for SOC prediction with the fastest learning time within 1 s, a short running time of 0.03 s, and accurate results with a 0.358% Mean Absolute Percentage Error, which is outstanding compared to other Data-Driven approaches and the physics-based model.
- Missouri University of Science and Technology United States
- Missouri University of Science and Technology United States
Battery soc, Battery modeling, TK1-9971, QA76.75-76.765, Machine learning, Random signal, Electrical engineering. Electronics. Nuclear engineering, Computer software, Estimation, Dynamic current
Battery soc, Battery modeling, TK1-9971, QA76.75-76.765, Machine learning, Random signal, Electrical engineering. Electronics. Nuclear engineering, Computer software, Estimation, Dynamic current
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
