Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy and AIarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and AI
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and AI
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy and AI
Article . 2021
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of voltage distribution using deep learning and identified key smart meter locations

Authors: Maizura Mokhtar; David Flynn; Fiona Fulton; Valentin Robu; Valentin Robu; Valentin Robu; Ciaran Higgins; +2 Authors

Prediction of voltage distribution using deep learning and identified key smart meter locations

Abstract

The energy landscape for the Low-Voltage (LV) networks is undergoing rapid changes. These changes are driven by the increased penetration of distributed Low Carbon Technologies, both on the generation side (i.e. adoption of micro-renewables) and demand side (i.e. electric vehicle charging). The previously passive ‘fit-and-forget’ approach to LV network management is becoming increasing inefficient to ensure its effective operation. A more agile approach to operation and planning is needed, that includes pro-active prediction and mitigation of risks to local sub-networks (such as risk of voltage deviations out of legal limits).The mass rollout of smart meters (SMs) and advances in metering infrastructure holds the promise for smarter network management. However, many of the proposed methods require full observability, yet the expectation of being able to collect complete, error free data from every smart meter is unrealistic in operational reality. Furthermore, the smart meter (SM) roll-out has encountered significant issues, with the current voluntary nature of installation in the UK and in many other countries resulting in low-likelihood of full SM coverage for all LV networks. Even with a comprehensive SM roll-out privacy restrictions, constrain data availability from meters. To address these issues, this paper proposes the use of a Deep Learning Neural Network architecture to predict the voltage distribution with partial SM coverage on actual network operator LV circuits. The results show that SM measurements from key locations are sufficient for effective prediction of the voltage distribution, even without the use of the high granularity personal power demand data from individual customers.

Country
Netherlands
Keywords

Voltage prediction, Smart meters, Privacy-preserving data analysis, Analytic methods in power networks, Deep neural learning, Distribution network operation, TK1-9971, QA76.75-76.765, Big Data Analytics, Electrical engineering. Electronics. Nuclear engineering, Computer software

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 19
  • 11
    views
    19
    downloads
    Data sourceViewsDownloads
    TU Delft Repository1119
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
12
Top 10%
Average
Top 10%
11
19
gold