Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2011 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2011
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2011
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Understanding boundary condition effects on the corrosion kinetics of class H well cement

Authors: Edward N. Matteo; Leo L Pel; George W. Scherer; Bruno Huet;

Understanding boundary condition effects on the corrosion kinetics of class H well cement

Abstract

AbstractStoring carbon dioxide in depleted petroleum reservoirs is a viable strategy for carbon mitigation, but ensuring that the sequestered CO2 remains in the formation is vital to the success of such projects. There is great concern for the development of leakage pathways through annuli between the well cement and the formation or the casing. Predicting the behavior of such potential leakage pathways is critical. Numerical simulations conducted using a reactive transport module match well with experimental studies, but also show the necessity of quantifying the transport and mechanical properties of the leached solid cementitious solids–predominantly silica gel–produced by carbonic acid corrosion of well cement.Bench-top experiments have been performed with the following goals in mind: (1) to investigate the parameter space of relevant corrosion boundary conditions, e.g. pH, CO2 concentration, and calcium ion concentration, (2) to produce samples that can be used to quantify the transport and mechanical properties of acid corroded Class H well cement, and (3) to validate and improve the accuracy of numerical simulations of the reaction of well cement with carbonic acid.Class H cement samples were uniaxially corroded via exposure to a brine of constant composition. Constant composition is ensured by constant renewal of the brine at a rate larger than cement reaction rate. H+, Ca2+ and CO2 total aqueous concentration in the NaCl brine are controlled independently by adding known amounts of NaCl, HCl, CaCl2 and NaHCO3 and by controlling CO2 partial pressure. Microscopic (30X) time-lapse videos were taken of each sample so that corrosion front movements could be accurately measured. These experiments have yielded corrosion front measurements that clearly show that corrosion front advancement is diffusion controlled (i.e., linear as a function of the square root of time). The uniaxial corrosion of these samples has not only allowed for detailed measurements of the corrosion front, but also affords the opportunity to measure the mechanical properties of the corroded samples as a function of depth. The one-dimensional corrosion also allows for measuring the diffusion coefficient of the outer layer of silica gel by low field Nuclear Magnetic Resonance (NMR).Measuring the kinetics under various boundary conditions has validated the modeling results reported by Huet et al.. The measurements of mechanical and transport properties can now be used to improve the predictive power of these simulations by providing much needed information on the exterior layer of corroded Class H well cement. Additionally, these experiments offer experimental validation that the corrosion kinetics are enhanced by the presence of CO2 and open the door to better understanding of the mechanism of, and boundary conditions that might lead to, “pore-plugging” by the corrosion products, which in turn leads to a drastic retardation of the corrosion reaction.

Country
Netherlands
Keywords

Carbonic acid, Acid leaching of portland cement, Wellbore integrity, Geologic CO2 storage, Energy(all), Acid leaching of Portland cement, Class H well cement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
gold