
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The effect of CO2 on the mechanical properties of reservoir and cap rock

AbstractWe have investigated the effect of CO2 on the mechanical stability of the reservoir-caprock system. Castlegate and Bentheimer sandstones were used as analogues for reservoir rock. Pierre shale was utilized as an analogue material for a typical cap rock. The effect of CO2 on carbonate rocks was studied by carrying out Brazilian tests on Lixhe and Austin chalks. The tensile strengths of both salt water and CO2-salt water exposed samples were observed to decrease with sample porosity. There was a positive correlation with tensile strength and p-wave velocity. The tensile strength of sandstone, shale and chalk is not markedly affected by the presence of CO2 in our tests. This observation has important implications for modeling fracture growth due to the injection of CO2 on geological formations because geomechanical models require tensile strength as an input parameter. Future experimental work should quantify the effect of CO2 on the entire failure envelope by using preserved core material and a triaxial test setup that mimics the in-situ stress and temperature conditions at a storage site.
Energy(all), Rock mechanics, Shale, Tensile strength
Energy(all), Rock mechanics, Shale, Tensile strength
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
