

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-commodity network flow models for dynamic energy management – Mathematical formulation

AbstractThe evolution of energy infrastructures towards a more distributed, adaptive, predictive and marketbased paradigm implies an effort on combining communication protocols and energy transmission and distribution systems in a common architecture. This architecture should allow decentralized control in order to be able to manage efficiently distributed generation, storage and exchange of energy between sources and sinks. Dynamic energy management models are a part of this “systems thinking” vision that aims to create a new field of applications that is at the intersection of computing science and energy technology. The broader implications associated with them are related with the possibility of creating communities that integrate energy supply and demand within a given region, in order to limit their impact. In order to push intelligence to the energy networks’ edges, up to individual sources and sinks, scalable and flexible distributed systems will have to be build. In this sense, data mining techniques and multicommodity network flow models can be combined for pattern detection, forecasting and optimization, which are essential features of dynamic energy management.
- University of Southampton United Kingdom
- Polytechnic University of Milan Italy
- National Institute for Nuclear Physics Italy
690, Convex programming, Dynamic energy management, 004, Multi-commodity network flow models, Energy(all), Linear programming, Smart Grid
690, Convex programming, Dynamic energy management, 004, Multi-commodity network flow models, Energy(all), Linear programming, Smart Grid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 2 - 2views
Data source Views Downloads ZENODO 2 0

