Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2012 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2012
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fabrication, sealing and high pressure testing of tubular La2NiO4+δ membranes for air separation

Authors: Christelle Denonville; Marie-Laure Fontaine; Florian Ahouanto; Thijs Peters; Partow Pakdel Henriksen; Rune Bredesen; Paul Inge Dahl; +2 Authors

Fabrication, sealing and high pressure testing of tubular La2NiO4+δ membranes for air separation

Abstract

AbstractRecent results achieved on fabrication of La2NiO4+δ membranes, sealing technology and performance in pressurized conditions are presented. Porous tubular membrane supports of up to 1 m length are prepared by ceramic extrusion. Asymmetric La2NiO4+δ membranes are prepared by coating dense selective layers of 10-15μm thickness onto the porous supports. Glass ceramic seals in the system Na2O-CaO-Al2O3-SiO2 are currently being evaluated for joining the membranes with high temperature steel alloys coated with a corrosion resistance protective layer. By adjusting the composition of the glass system the thermal expansion coefficient is tailored to match that of the membrane and steel material. Good seal adherences towards these materials are obtained. Long term oxygen flux measurements (>4000hours continuous operation) performed on symmetric (dense) La2NiO4+δ membranes are conducted under various conditions (atmosphere, temperature, pressure). The oxygen flux dependency on the oxygen partial pressure (pO2) is investigated by increasing the feed pressure and oxygen content. An asymptotic flux behavior is observed with increasing pO2. It is seen a significant increase in the flux (by a factor of 6) when increasing the feed pO2 from 0.8 to 2.4 bars while a less significant pO2 dependency is observed with further increase.

Related Organizations
Keywords

pressurized testing, fabrication, Oxygen transport membranes, Energy(all), sealing

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research