
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Light Induced Curing (LIC) of Passivation Layers Deposited on Native Silicon Oxide

AbstractThis work presents a novel insight to the aspects of silicon surface passivation and the influence of thin intermediate layers generated by chemically grown silicon oxides. Strong light induced effects on passivation properties are investigated. After exposure to light (0.25 suns) for about 60 s, samples based on a PECVD layer system consisting of SiNx and SiO2 deposited on crystalline silicon with native silicon oxides show an improvement of more than 100% in minority carrier lifetime. These improvements are stable over months and lead to effective surface recombination velocities as low as 10cm/s on chemically polished p-type FZ wafers. With the use of different light sources, corona charging and annealing experiments the effect is investigated in detail. Finally, the effect is proposed to be a photo induced curing process of defects in the Si/SiO2 interface with the incorporation of hydrogen.
- University of Konstanz Germany
Passivation, semiconductor-insulator boundaries, silicon nitride, Energy(all), info:eu-repo/classification/ddc/530, silicon oxide
Passivation, semiconductor-insulator boundaries, silicon nitride, Energy(all), info:eu-repo/classification/ddc/530, silicon oxide
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
