
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of Long-term CO2 Trapping Mechanisms at the Ketzin Pilot Site (Germany) by Coupled Numerical Modelling

AbstractTo assess the long-term reservoir stabilisation at the Ketzin pilot site (Germany), the contribution of the four CO2 trapping mechanisms (structural, residual, dissolution and mineralisation trapping) was determined by numerical modelling. In the first step, dynamic flow simulations were undertaken using a reservoir simulator. The second step comprised batch simulations applying a geochemical simulator. Coupling between both simulators was achieved by time-step dependent integration of water saturation calculated in the reservoir simulations. After a simulation time of 16,000 years, about 98.3% of the injected CO2 is dissolved in the formation fluid and 1.5% mineralised, while residual trapping contributes with 0.2% and structural trapping is negligible.
numerical modelling, 550 - Earth sciences, CO2 trapping mechanisms, brine displacement, Energy(all), CO2 storage, Ketzin pilot site
numerical modelling, 550 - Earth sciences, CO2 trapping mechanisms, brine displacement, Energy(all), CO2 storage, Ketzin pilot site
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
