
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal Performance of a Hybrid BIPV-PCM: Modeling, Design and Experimental Investigation

AbstractIn this paper, a BIPV-PCM installed in an office building façade is investigated to approach the practical application of PV-PCM. Based on an updated mathematical model, theoretical simulation has been conducted for BIPV-PCM in this case. Furthermore, field testing for this case has also been performed to validate the model, and then the simulated and experimental results are compared and found in considerably good agreement. The experiments have been conducted during the winter time, as the prototype has been installed in January 2013. The experimental and numerical results show a good agreement, the maximum electrical efficiency of this BIPV-PCM can reach 10% and the thermal one 12%.
- University of Chicago United States
- Concordia University Wisconsin United States
- Laboratório Nacional de Energia e Geologia Portugal
- Laboratorio Nacional de Energia e Geologia I.P. Portugal
- Concordia University Canada
Building-integrated photovoltaic, Energy storage, Phase change materials, Phase Change Material, Net Zero-Energy Buildings, Energy(all), Thermal modeling, Building-integrated Photovoltaic, Zero Energy Buildings
Building-integrated photovoltaic, Energy storage, Phase change materials, Phase Change Material, Net Zero-Energy Buildings, Energy(all), Thermal modeling, Building-integrated Photovoltaic, Zero Energy Buildings
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).120 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
