
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Al-doped ZnO Transparent Contacts Deposited by a Spray Pyrolysis Technique on Performance of HIT Solar Cells

AbstractTransparent and conductive Al-doped ZnO (AZO) thin films were deposited by spray pyrolysis and analysed in the aim to improve optical and electrical properties involved in the efficiency of Heterostructure with Intrinsic Thin Layer (HIT) solar cell. X-ray diffraction measurement shows that AZO film grown on glass has (002) preferred orientation. High optical transmittance value of ∼80% in the visible region was observed and the optical band gap was found to be 3.31eV at room temperature. The influence of AZO thin films as transparent conductive oxide TCO on heterojunction with intrinsic thin-layer (HIT) solar cell performance was investigated using software simulation. The beneficial effect of implementing AZO front contact for increasing electrical energy conversion properties of HIT solar cell compared to the reference cell without the AZO layer.
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], [ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics], [PHYS.PHYS.PHYS-OPTICS] Physics/Physics/Optics, AZO, Efficiency ;, TCO, HIT solar cell
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics], [ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics], [PHYS.PHYS.PHYS-OPTICS] Physics/Physics/Optics, AZO, Efficiency ;, TCO, HIT solar cell
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
