
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evolutionary Optimisation for CO2 Storage Design Using Upscaled Models: Application on a Proximal Area of the Forties Fan System in the UK Central North Sea

AbstractOptimisation of injection rates is an important design consideration for meeting operational objectives and ensuring long term geological storage of CO2 in saline aquifers. The optimal design should also take into account the uncertainties associated with the subsurface (e.g., petrophysical attribution and structural relationships). Detailed geological models along with different realisations for handling uncertainties increase the computational overheads, making the optimisation problem intractable. To circumvent this problem, upscaled models can be used to speed up the identification of optimal solutions. Nevertheless, a grid resolution, which does not compromise the accuracy of the optimisation in an upscaled model, must be carefully determined. The methodology described in this paper aims to address this requirement. In this study, a 3D geological model, comprising the main oil reservoirs of the Forties and Nelson hydrocarbon fields and the adjacent saline aquifer, was built to examine the use of coarse grid resolutions to design an optimal CO2 storage solution for this area within the UK Central North Sea. Simulation results for single objective optimisation show that an upscaled grid resolution can be identified which is a trade-off between accuracy and computational time. The outlined methodology is generic in nature and can be ported to other similar optimisation problems for CO2 storage.
- Natural Environment Research Council United Kingdom
- Imperial College London United Kingdom
- University of Salford United Kingdom
- British Geological Survey United Kingdom
- British Geological Survey United Kingdom
upscaling, surrogate modelling, 621, 600, single objective optimisation, Energy(all), CO2 storage, Earth Sciences, genetic algorithm
upscaling, surrogate modelling, 621, 600, single objective optimisation, Energy(all), CO2 storage, Earth Sciences, genetic algorithm
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
