
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomethane Supply Support Policy: System Dynamics Approach

AbstractSupport for renewable energy currently is revised in many countries due to the perception that the economic burden caused by the support exceeds the permissible limit. Decreased or suspended support creates instability in renewable energy production. There is a lack of research related to design of the sustainable renewable energy support policy, which considers the structure of the support policy system in detail leading to successful implementation of such support. The aim of the study was to create the model which helps to devise biomethane supply support policy providing controllable and stable growth of biomethane production over time avoiding relapsed “overshoots and oscillations” in the system. Due to the dynamic and complex character of energy supply system policy decisions, system dynamics was used as the method. The results show that the main parameters which have an impact on stability of the support policy are feedbacks linking the total biomethane support payments, the granted permits, the perceived limit of the support, willingness to invest in the production assets as well as time delays of the action resulting from the feedbacks. The results show that biomethane production can reach up to 610 GWh with the support of 66 EUR per MWh in 2030 without exceeding the perceived support limit and avoiding fluctuations in the system. The developed method-model can be used by the researchers and energy policy developers to study the dynamics of investments into biomethane supply systems and the resulting biomethane production volumes depending both on the sizes of the subsidies provided for the biomethane as well as the structure of the support system.
- Riga Technical University Latvia
renewable energy support policy, biomethane, energy strategy, energy dependency, Energy(all), system dynamics
renewable energy support policy, biomethane, energy strategy, energy dependency, Energy(all), system dynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
