
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
HVAC Energy Saving in IPS-enabled Large Space: An Occupancy Distribution Based Demand-driven Control Approach

Abstract Occupancy attracts an increasing attention in recent building energy efficiency research through enabling more sophisticated control strategies. With the development of latest indoor positing systems (IPS), the facility managers are able to detect the geospatial distribution of building occupants. Based on such information, this paper proposes a demand-driven control system for HVAC control in large spaces to reconcile occupants’ thermal comfort demand and energy consumption. Comparing to conventional temperature and CO2 based HVAC control systems, the new approach integrates the indoor positions of occupants and a demand-oriented and PID-based ventilation control mechanism. An computational fluid dynamic simulation is constructed to valid the proposed control system. Air supply flow rate and temperature distribution are captured for three sample cases that have even and uneven occupancy distributions in the simulation. By avoiding overcooling and unnecessary cooling, the proposed approach could save a significant amount of electrical consumption from HVAC operation.
- City University of Hong Kong China (People's Republic of)
- National University of Singapore Singapore
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
