Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2017 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2017
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental and Numerical Analysis of a Non-Newtonian Fluids Processing Pump

Authors: Aldi, Nicola; Buratto, Carlo; Casari, Nicola; Dainese, Devid; Mazzanti, Valentina; Mollica, Francesco; Munari, Enrico; +5 Authors

Experimental and Numerical Analysis of a Non-Newtonian Fluids Processing Pump

Abstract

Abstract Centrifugal pumps are used in many applications in which non-Newtonian fluids are involved: food processing industry, pharmaceutical and oil/gas applications. In addition to pressure and temperature, the viscosity of a non-Newtonian fluid depends on the shear rate and usually is several orders of magnitude higher than water. High values of viscosity cause a derating of pump performance with respect to water. Nowadays, pumping and mixing non-Newtonian fluids is a matter of increasing interest, but there is still lack of a detailed analysis of the fluid-dynamic phenomena occurring within these machines. A specific design process should take into account these effects in order to define the proper pump geometry, able to operate with non-Newtonian fluids with specific characteristics. Only few approaches are available for correcting the pump performance based on the Hydraulic Institute method. In this work, an experimental and numerical campaign is presented for a semi–open impeller centrifugal pump elaborating non-Newtonian fluids. An on-purpose test bench was built and used to investigate the influence on pump performance of three different non-Newtonian fluids. Each pump performance test was accompanied by the rheological characterization of the fluid, in order to detect modifications of the rheological phenomena and allow a proper Computation Fluid Dynamics (CFD) modeling. The performance of the machine handling both Newtonian and non-Newtonian fluids are highlighted in relation with the internal flow field.

Country
Italy
Keywords

centrifugal pump; CFD; non-Newtonian fluids; pseudoplastic; semi-open impeller; Energy (all)

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research