
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

handle: 10754/625977
Abstract We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO x :H with CO 2 /SiH 4 ratio of 0.4 and a-SiOx:H with CO 2 /SiH 4 ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J sc , and fill factor FF temperature-dependency are impacted by the cell’s configuration. While the short circuit current density J sc for cells with a-SiO x :H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO x :H) layer with CO 2 /SiH 4 ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45 °C, thus, a positive FF temperature coefficient.
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
- King Abdullah University of Science and Technology Saudi Arabia
- King Abdullah University of Science and Technology Saudi Arabia
- Qatar Foundation Qatar
- MASDAR INSTITUTE OF SCIENCE AND TECHNOLOGY NON PROFIT INSTITUTION United Arab Emirates
current-voltage curve, irradiance, temeprature coefficient, Silicon heterojucntion
current-voltage curve, irradiance, temeprature coefficient, Silicon heterojucntion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
