Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2017 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2018
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Siting assessment for Kinetic Energy Turbines: an emplacement study for sea and river applications

Authors: LO ZUPONE, GIACOMO FRANCESCO; Massaro, S.; Barbarelli, S.; Sulpizio, R.;

Siting assessment for Kinetic Energy Turbines: an emplacement study for sea and river applications

Abstract

Abstract The siting and design of a Tidal Energy Converter (TEC) require the characterization of the flow velocity field acting in terms of space and time, in order to assess the hydrodynamic forces, to calculate the structural loading and power capacity, also helping investment strategy and project financing. In this framework, the selection of the emplacement site is of paramount importance for optimizing efficiency of TEC. In this study, we propose site assessment procedures for emplacement of TEC machines, comparing a sea tidal site with two rivers ones. Sites differ each other from geomorphological characteristics. The Cook Inlet (South-Central Alaska) is a large subarctic estuary, which extends about 250 km from Anchorage bay to the Pacific Ocean. Tidally dominated currents control the hydrographic regime, with water levels and currents periodically influenced by tides from the Gulf of Alaska, which are significantly amplified as approaching Anchorage bay. The Chang Jiāng river (also named Yangtze, China) is the longest in Asia and the third in the world, with a huge flow rate. The Pearl River Estuary (China) has a length of about 70 km, a width of about 15 km and an average depth of about 4.8 m. It is deeper than 20 m in its eastern part, and discharges into a microtidal environment along the northern shelf of the South China Sea. The TEC performances have been compared in the three different geomorphological environments. Results show how TEC in rivers can perform up to 5.47 kW/m2, a huge value compared to the wide sea turbines, able to perform up to 10.76 kW/m2.

Country
Italy
Keywords

geomorphology, TEC, marine and fluvial environment, fluvial environment; geomorphology; marine; siting; TEC; Tidal Energy Converter; Energy (all), General Energy, Tidal Energy Converter, siting

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
  • 2
    views
    Data sourceViewsDownloads
    ZENODO20
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
2
Average
Average
Average
2
Green
gold