
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Primary Frequency Control Method of Tidal Turbine Based on Pitch Control

Due to the increasing penetration level of tidal power in power system, the tidal turbines can provide less frequency support than conventional generators due to their small rotor mass. This makes the power system with low inertia and cause frequency problem. This paper presents a simulation model of a tidal power farm based on a MW-level variable speed tidal turbine with doubly-fed induction generator (DFIG) developed in the simulation tool of Matlab/Simulink. According to the reserve capacity required for primary frequency control, a de-loading control method is proposed in this paper to resolve the issue of primary frequency control via tidal power plant. Based on the analysis method of the frequency control characteristics of DFIGs, it is proposed by improved variable pitch control method. The control strategy, which is based on pitch control system of tidal turbine, is proposed in order to participate into primary frequency regulation of power system. Simulation results show that the proposed control strategy is effective means the tidal turbines with DFIG generators could providing frequency support for power system when they are working under the de-loading condition in this paper.
- Aalborg University Denmark
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
- Aalborg University Library (AUB) Denmark
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
pitch control, tidal turbine, DFIG, primary frequency control, de-loading operation
pitch control, tidal turbine, DFIG, primary frequency control, de-loading operation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
