
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Balancing urban density, energy performance and environmental quality in the Mediterranean: a typological evaluation based on photovoltaic potential

Abstract As research on the correlation between urban design and environmental performance is still lacking, the following long-standing question still stands – How far can we densify urban districts without sacrificing their energy balance and indoor environmental quality? This question served as the starting point for a parametric typological study conducted at the block scale in the context of Tel Aviv, with the overall aim of promoting performance driven design of Mediterranean urban environments. Dynamic input parameters included fenestration ratio, aspect ratios and floor area ratios of 5 different building typologies in both office and residential land uses. Environmental outputs included energy cooling loads, spatial daylight autonomy and the monthly average load match between energy demand and photovoltaic energy supply. The courtyard typology was found to achieve the best performance in terms of monthly Load Match, however mostly in residential uses of lower density. Although the high-rise typology offered the best daylight conditions, it recorded the worse performance in terms of energy balance and energy cooling demand. Results demonstrate the potential of a parametric typological workflow to effectively indicate the tradeoffs between single building and urban scale design considerations. This potential could be harnessed to assess the environmental feasibility of net zero energy typologies in Mediterranean climates and will be used for district energy studies as part of future work.
- Technical University of Munich Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
