
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nonlinear Model Predictive Control strategy for steam turbine rotor stress


Stefano Dettori

F. Bucciarelli

Alessandro Maddaloni
Abstract The paper proposes a Nonlinear Model Predictive Control strategy for the control of steam turbines rotor thermal stresses, which exploits the approximation of the turbine rotor as an infinite cylinder subjected to external convection. The Nonlinear Model Predictive Control allows optimizing the control strategy in the long term, by significantly reducing the machine start-up time during the power up ramp. This study proposes two different control strategies: the former one is based on the control of the Heat Transfer Coefficient, correlated to the inlet valve stroke. The latter one is based on the control of Heat Transfer Coefficient and the boiler steam temperature reference. Both strategies achieve good results in shortening the start-up time. The overall approach is validated and currently under development on Programmable Logic Controller platforms to the aim of code optimization.
- Baker Hughes United States
- Sant'Anna School of Advanced Studies Italy
- INSTITUT POLYTECHNIQUE DE PARIS France
- Baker Hughes (United States) United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
