

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Neural Network-based modeling methodologies for energy transformation equipment in integrated steelworks processes

handle: 11382/523734
Abstract The paper proposes a methodology for modeling of energy transformation equipment which are commonly found in integrated steelworks, mainly focusing on steam production in the Basic Oxygen Furnace and auxiliary boilers, the electric power production in off-gas expansion turbines and some relevant steam and electricity consumers. The modeling approach is based on standard neural networks and Echo State Networks (ESN) for forecasting the variables of interest. All the models are intended as processes predictors to be used in a hierarchical control strategy based on multi-period and multi-objective optimization techniques and model predictive control. The overall target is the optimization of the re-use of off-gas produced in integrated steelworks by minimizing costs and maximizing revenues. Training and validation of models have been carried out by exploiting real historical data provided by steelmaking companies and have been successful tested.
- National Institute for Nuclear Physics Italy
- Sant'Anna School of Advanced Studies Italy
- ArcelorMittal Spain
- ArcelorMittal Spain
General Energy
General Energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 1 - 1views
Data source Views Downloads ZENODO 1 0

