
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical investigation on the cooling of electronics components with synthetic multi-jets and non-sinusoidal bi-periodic forcing functions

handle: 10419/243973
Recently, the cooling process for electronics components has attracted many researchers and several techniques for improving the cooling efficiency and heat transfer rate have been demonstrated. One of the best efficient techniques is the introduction of a synthetic jet and the modification of heating surface. In the present study, the form of heating surface and the signal of the diaphragm has been modified to improve the synthetic jet. These modifications are novel and have been applied for the first time with very good thermal enhancement efficiency for microchannels with synthetic jets applications. This study allowed us to make a quantitative comparison between a basic case with a periodic signal and modified case with bi-periodic signal with two cavities having a slope of 3°, 60 percent obstruction orifices and 10mumof undulation heated wall. The unsteady flow and heat transfer for the two-dimensional synthetic jet are solved using ANSYS fluent code and k-ω (SST) model is selected to account for fluid turbulence. Obtained results showed an increase of Nusselt number by about 51% for the modified case compared with the basic case. Keywords: Heat transfer, Synthetic jet, (SST) K-ω turbulence model, Undulation heated wall, Nusselt number, Periodic signal, Bi-periodic signal
- Université Djillali Liabes Algeria
- Imperial College London United Kingdom
- SIDI Italy
- SIDI Italy
ddc:330, Bi-periodic signal, turbulence model, TK1-9971, Periodic signal, Undulation heated wall, Heat transfer, Synthetic jet, Electrical engineering. Electronics. Nuclear engineering, (SST) K-w, Nusselt number
ddc:330, Bi-periodic signal, turbulence model, TK1-9971, Periodic signal, Undulation heated wall, Heat transfer, Synthetic jet, Electrical engineering. Electronics. Nuclear engineering, (SST) K-w, Nusselt number
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
