Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/vq...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/6x...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation of the thermoelectric cooling with vacuum wall system

الفحص التجريبي للتبريد الكهربائي الحراري مع نظام جدار التفريغ
Authors: Surasit Thiangchanta; Tuan Anh; Watcharapong Tachajapong; Yuttana Mona;

Experimental investigation of the thermoelectric cooling with vacuum wall system

Abstract

Les modules de refroidissement thermoélectrique (TEC) sont réalisés dans de nombreux appareils en raison de leur dimensionnement flexible. Cette application a besoin d'un courant continu pour produire un effet de refroidissement. Dans cette étude, l'expérience s'est concentrée sur la conception du système de refroidissement en utilisant le TEC dans une paroi sous vide. La paroi sous vide est connue pour être bien isolée, ce qui contribue à réduire la charge thermique des applications. Une boîte de refroidissement pour la conservation du vaccin a été conçue dans cette étude, avec une température intérieure variant entre 17, 19, 21, 23 et 25 °C. Des conditions de vide de −15, −20 et −25 en Hg ont été utilisées. Les résultats montrent que la puissance requise diminue lorsque la température intérieure augmente. Le TEC peut également contrôler la température intérieure, lorsque la température ambiante extérieure est légèrement différente dans toutes les conditions d'essai. La puissance varie directement avec le niveau de vide, ce qui montre que la paroi de vide peut réduire la charge thermique de l'environnement extérieur. De plus, la corrélation de l'exigence de puissance dans laquelle la température intérieure peut être prédite avec un bon accord est rapportée.

Los módulos de enfriamiento termoeléctrico (TEC) se están logrando en muchos dispositivos debido a su tamaño flexible. Esta aplicación necesita un DC para hacer un efecto de enfriamiento. En este estudio, el experimento se centró en el diseño del sistema de refrigeración utilizando TEC en una pared de vacío. La pared de vacío se conoce como bien aislada, lo que ayuda a reducir la carga de calor de las aplicaciones. En este estudio se diseñó una caja de enfriamiento para conservar la vacuna, con una temperatura interior que variaba entre 17, 19, 21, 23 y 25 °C. Se utilizaron condiciones de vacío de -15, -20 y -25 en Hg. Los resultados muestran que la potencia requerida disminuye cuando aumenta la temperatura interior. El TEC también puede controlar la temperatura interior, cuando la temperatura ambiente exterior es ligeramente diferente en todas las condiciones de prueba. La potencia varía directamente con el nivel de vacío, lo que demuestra que la pared de vacío puede reducir la carga de calor del entorno exterior. Además, se informa la correlación del requisito de potencia en el que se puede predecir la temperatura interior con un buen acuerdo.

Thermoelectric cooling (TEC) modules are being accomplished in many devices due to their flexible sizing. This application needs a DC to make a cooling effect. In this study, the experiment was focused on the cooling system design using TEC in a vacuum wall. The vacuum wall is known as being well-insulated which helps to reduce the heat load of applications. A cooling box for vaccine preservation was designed in this study, with the inside temperature varied between 17, 19, 21, 23, and 25 °C. Vacuum conditions of −15, −20, and −25 in Hg were used. The results show that the power required decreases when the inside temperature increases. The TEC can control the inside temperature as well, when the outside ambient temperature is slightly different in all testing conditions. The power varies directly with the vacuum level, which shows that the vacuum wall can reduce the heat load from the outside environment. Moreover, the correlation of the power requirement in which the inside temperature can be predicted with good agreement is reported.

يتم إنجاز وحدات التبريد الكهربائي الحراري (TEC) في العديد من الأجهزة بسبب حجمها المرن. يحتاج هذا التطبيق إلى تيار مستمر لإحداث تأثير تبريد. في هذه الدراسة، ركزت التجربة على تصميم نظام التبريد باستخدام TEC في جدار التفريغ. يُعرف جدار التفريغ بأنه معزول جيدًا مما يساعد على تقليل الحمل الحراري للتطبيقات. تم تصميم صندوق تبريد لحفظ اللقاح في هذه الدراسة، مع اختلاف درجة الحرارة الداخلية بين 17 و 19 و 21 و 23 و 25 درجة مئوية. تم استخدام ظروف الفراغ من -15 و -20 و -25 في الزئبق. تظهر النتائج أن الطاقة المطلوبة تنخفض عندما ترتفع درجة الحرارة الداخلية. يمكن لـ TEC التحكم في درجة الحرارة الداخلية أيضًا، عندما تكون درجة الحرارة المحيطة الخارجية مختلفة قليلاً في جميع ظروف الاختبار. تختلف الطاقة بشكل مباشر مع مستوى التفريغ، مما يدل على أن جدار التفريغ يمكن أن يقلل من الحمل الحراري من البيئة الخارجية. علاوة على ذلك، يتم الإبلاغ عن ارتباط متطلبات الطاقة التي يمكن من خلالها التنبؤ بدرجة الحرارة الداخلية باتفاق جيد.

Keywords

Nuclear engineering, Astronomy, Materials Science, FOS: Mechanical engineering, Organic chemistry, Mechanics, Thermoelectric effect, Thermoelectric application, Engineering, Thermoelectric cooling, Materials Chemistry, Nanotechnology, Passive Radiative Cooling Technologies, Ionosphere, Sizing, Civil and Structural Engineering, Heat load, Thermoelectric Materials, FOS: Nanotechnology, Temperature control, Thermoelectric, Physics, Power (physics), Ultra-high vacuum, TEC, Materials science, Mechanical engineering, TK1-9971, Chemistry, Physical Sciences, Water cooling, Thermodynamics, Electrical engineering. Electronics. Nuclear engineering, Nanoscale Thermal Transport in Carbon Materials, TEC cooling, Vacuum wall

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
gold